Photo Gallery: Parts with Tin Whiskers

What are Tin Whiskers?

Tin whiskers are electrically conductive, crystalline structures of tin that sometimes grow from surfaces where tin (especially electroplated tin) is used as a final finish.  Tin whiskers have been observed to grow to lengths of several millimeters (mm) and in rare instances to lengths in excess of 10 mm.  Numerous electronic system failures have been attributed to short circuits caused by tin whiskers that bridge closely-spaced circuit elements maintained at different electrical potentials.

 

Tin whiskers are not a new phenomenon.  Indeed, the first published reports of tin whiskers date back to the 1940s and 1950s. Tin is only one of several metals that is known to be capable of growing whiskers.  Other examples of metals that may form whiskers include some tin alloys, zinc, cadmium, indium, antimony, silver among others . 

 

People sometimes confuse the term “whiskers” with a more familiar phenomenon known as “dendrites” commonly formed by electrochemical migration processes.  Therefore, it is important to note here that whiskers and dendrites are two very different phenomena. A “Whisker” generally has the shape of a very thin, single filament or hair-like protrusion that emerges outward (z-axis) from a surface.  “Dendrites”, on the other hand, form in fern-like or snowflake-like patterns growing along a surface (x-y plane) rather than outward from it.  The growth mechanism for dendrites is well-understood and requires some type of moisture capable of dissolving the metal (e.g., tin) into a solution of metal ions which are then redistributed by electromigration in the presence of an electromagnetic field.  While the precise mechanism for whisker formation remains unknown, it is known that whisker formation does NOT require either dissolution of the metal NOR the presence of electromagnetic field

via Photo Gallery: Parts with Tin Whiskers.

Advertisements
Post a comment or leave a trackback: Trackback URL.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: